
Field theory is the most advanced subfield of theoretical physics that has been
actively developing in the last 50 years. Traditionally, field theory is viewed as a
formalism for solving many-body quantum mechanical problems, but the path or
functional-integral representation of field theory is very useful in a much broader
context. Here we discuss its use for predicting from first principles the stochastic,
or turbulent, behavior of hydrodynamic flows. 

The functional-integral formalism in field theory is a generalization of the
famous Feynman-Kac path integral, which was introduced as a convenient alter-
native to the description of quantum mechanics by the Schrödinger equation. The
path integral defines a quantum mechanical matrix element, or probability density
for an observable, in terms of a sum over all possible trajectories, or variations, of
the observable, some of which are forbidden by classical mechanics. In the more
general functional-integral formalism, there is a field corresponding to each
observable. In turn, to each field configuration, there is a corresponding statistical
weight, and the product of the two is the integrand in the functional integral. The
functional integral, which constitutes a summation or integration over many real-
izations of that field or observable, provides the probability distribution function
for the observable. 

In the 1950s, many researchers understood that any problem involving random
variables, or random fields, can be interpreted in terms of a sum or integral over
many field trajectories or field configurations. The simplest example is the prob-
lem of diffusion. There, the probability distribution function for the distance trav-
eled by a single molecule as it collides at random with other molecules in a medi-
um is calculated as a path integral over many Brownian motion trajectories. The
integral reformulation is often advantageous because it allows one to utilize very
powerful theoretical tools to evaluate or approximate the integrals. Perturbative
analysis (often formulated in terms of diagrammatic techniques), saddle-point, or
instanton, techniques, and various transformations (change of integration vari-
ables) are among the most useful tricks that allow analytical or semianalytical
(numerical evaluation follows a theoretical step) evaluations.

Any problem in turbulence, or for that matter any statistical problem, formu-
lated in terms of stochastic ordinary or partial differential equations can be refor-
mulated in terms of a functional, or path, integral. Many researchers have con-
tributed to the development of this field-theoretical approach to the problem of
turbulent flow. This approach is now called statistical hydrodynamics. In the
1960s the most notable contributions to statistical hydrodynamics came from
Robert Kraichnan (1967), who discovered the idea of the inverse cascade for two-
dimensional (2-D) turbulence, and from Vladimir Zakharov (1967), who put the
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theory of wave turbulence on a firm mathematical ground by finding turbulence
spectra as exact solutions and by introducing the notion of inverse and dual cas-
cades in wave turbulence.

Perturbative (or diagrammatic) analysis, which was at the core of the
Kraichnan-Zakharov analysis, defined the spirit of the most important theoretical
results in statistical hydrodynamics for some 30 years following publication of
Kraichnan and Zakharov’s seminal papers cited above. The work described in
those papers was cited in the award write-up for the 2003 Dirac Medal that went
to Kraichnan and Zakharov.1 

Between 1994 and 1995, however, three independent groups (refer to
Chertkov et al. 1995, Chertkov and Falkovich 1996, Gawedzki and Kupiainen
1995, Shraiman and Siggia 1995, Pumir et al. 1997) came to the conclusion that
the perturbative approach, which apparently led to self-similar scaling laws for
the correlation and other structure functions of Navier-Stokes turbulence, did not
work for passive scalar turbulence. By applying nonperturbative field-theoretic
techniques, these groups were able to prove the existence of anomalous scaling in
passive scalar turbulence. Below, we outline these new developments and discuss
the possible implications for anomalous scaling in both theoretical and applied
contexts of turbulent flow.

Intermittency and the Passive Scalar Model

Passive scalar turbulence describes the advection and diffusion of a scalar quan-
tity (such as temperature or pollutant concentration) in a turbulent flow. The
scalar quantity is described by a scalar field θ (t,r), and the dynamics of the
scalar field evolve in space r and time t according to the following linear equa-
tion:

(1)

where κ, u(t,r) and φ (t,r) stand for the diffusion (either thermal or material)
coefficient, the incompressible velocity field, and the source field controlling
injection of the scalar θ, respectively. The advection of θ is a passive process
under the assumption that all three fields—velocity u, injection φ, and scalar θ—
are statistically independent of each other. That assumption, which is realistic in
many practical cases, means that effects of the scalar field fluctuations on the
flow (for example, buoyancy) are neglected.

A few years after Kolmogorov (1941) proposed the inertial cascade four-fifths
law, relating third moment of velocity increment to the energy flux and energy
dissipation in Navier-Stokes turbulence, Obukhov (1949) and Corrsin (1951)
independently suggested that a similar consideration applies to the passive scalar
problem. Indeed, if diffusion and injection are removed from Equation (1), then
the integral of θ 2 over all space, ∫ drθ 2, is conserved (or does not change with
time). One can therefore consider θ 2 in the passive scalar problem as analogous
to kinetic energy density, or u2, in Navier-Stokes turbulence. In any turbulent
flow, the velocity fluctuations grow with scale size in the inertial range of scales,
which lies between the dissipation scale η and the large forcing scaling L.
Analogously, if the diffusion coefficient κ is small while the source field φ injects
the “scalar energy” at a relatively large scale, Lφ, then advection dominates diffu-
sion in the so-called convection range, which extends from Lφ down to the diffu-
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sive scale, rd. The ratio of the two scales Lφ/rd is a large dimensionless number
that plays a role in passive scalar turbulence analogous to the role of the pump-
ing-to-viscous scale ratio in the Navier-Stokes turbulence. That is, when the
dimensionless ratio Lφ/rd (closely related to the Peclet/Schmidt numbers)
becomes large, passive scalar turbulence develops.

In the Obukhov-Corrsin picture of the passive scalar problem, once a large
blob of the scalar field (that is, large on the scale of Lφ) is injected into a turbu-
lent flow, turbulent advection causes a fine spatial structure of scalar inhomo-
geneities to develop within the initially homogeneous cloud. The finest scale of
the spatial inhomogeneities is rd because inhomogeneities at even smaller scales
are smeared out by diffusion. In the language of the θ 2-energy “budget,” the
scalar energy density θ 2, which is permanently supplied at the large scale Lφ, cas-
cades toward smaller scales within the convective range and is dissipated at the
small scales, approximately rd. Thus, the analog of Kolmogorov’s four-fifths law
for the scalar energy flux in passive scalar turbulence reads 

(2)

where 〈…〉 describes averaging, with respect to statistics, of both velocity 
and injection fields and εφ is the averaged scalar-energy dissipation rate, 
εφ = κ 〈(∇θ)2〉. In this Obukhov-Corrsin picture, the flux of θ 2 remains constant
from scale to scale within the convective range, and the scalar-energy dissipation
rate is equal to the scalar-energy input rate at the injection scale, estimated as 
εφ ~ θ 2

Lφ uLφ/Lφ, where uLφ and θLφ are typical values of velocity and scalar fluc-
tuations at the injection scale. 

Equation (2), which is the passive scalar analog of the four-fifths law control-
ling the scalar energy budget, is exact. The exact statement, however, is limited to
the very special correlation function, and no generalization is known of
Equation (2) for other simultaneous correlation functions of the scalar field. This
caveat was “fixed” by Obukhov and Corrsin, who conjectured self-similarity of
scalar fluctuations. The conjecture is akin to Kolmogorov’s self-similarity
assumption for velocity fluctuations. 

The self-similarity for the scalar-field statistics looks simple and thus appeal-
ing. However, accurate experimental measurements between the 1960s and the
1980s (Sreenivasan 1991, Sreenivasan and Antonia 1997), supported neither the
Kolomogorov nor the Obukhov-Corrsin predictions for self-similar scaling laws,
thus offering an early hint that anomalous scaling is common in turbulence. For
the passive scalar increments, the anomalous scaling scenario means that the
moments of scalar increments have the following form:

(3)

where ∆2n > 0 is the anomalous exponent. In this formal description, the self-sim-
ilar scenario would correspond to ∆2n = 0. The anomalous scaling, and thus lack
of self-similarity, appeared to be much more pronounced in the experimental data
for the scalar field than for the velocity field. Because at that time there was no
theoretical understanding of the origin of anomalous scaling, the observations
were essentially rejected as spurious.

Resolution of the standoff on anomalous scaling emerged in the mid-1990s.
First, Kraichnan proposed (1994) an ad hoc scheme for producing a closed set of
equations for what is today called the Kraichnan model. This microscopic model,
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initially introduced in 1967 (refer to Kraichnan 1967), deals with passive scalar
turbulence for a velocity field in Equation (1) that has self-similar statistics. The
velocity field in the model was chosen to be incompressible, Gaussian, and short
correlated (δ-correlated) in time. Spatial correlations in the model are character-
ized by the pair correlation function of the velocity difference between two points
measured at two distinct times:

(4)

where α, β = 1, . . . , d. The eddy diffusivity tensor Kαβ (r) is growing alge-
braically with the spatial separation K ∝ r2–γ so that the exponent characterizing
the degree of non-smoothness of the synthetic velocity field γ and the spatial
dimensionality d are two independently controlled parameters. In his 1994 paper,
Kraichnan proposed an approximate closure scheme resulting in a closed set of
equations for scalar structure functions of order 4, S4(l) = 〈[θ (r + 1) – θ (r)]4〉,
and higher. The main message here was that, although the velocity field exhibited
self-similarity, the scalar fluctuations are extremely intermittent and thus charac-
terized by an anomalous expression generalizing Equation (3)

(5)

with ξ2n ≠ nξ2 and ∆2n ≠ 0. Then, independently, and almost simultaneously,
three groups (refer to Chertkov et al. 1995, Chertkov and Falkovich 1996,
Gawedzki and Kupiainen 1995, Shraiman and Sigia 1995, Pumir et al. 1997)
developed a rather different approach that required no ad hoc closure assump-
tions.

The new approach focused on the analysis of the simultaneous correlation
function of the scalar field taken at four different points, F1234 ≡ 〈θ (t,r1) θ (t,r2)
θ (t,r3) θ (t,r4)〉. That four-point correlation function is governed by a second-
order linear, and therefore closed (!!!), partial differential inhomogeneous equa-
tion,

(6)

where

is the differential operator of the second order, called eddy diffusivity operator,
and χ is a known function, so that no ad hoc closure was required. The solution
of any linear differential equation can be presented for a subinternal range of
scales as a sum of homogeneous and certain inhomogeneous solutions of the
equation. (For the four-point correlation function, the subinternal range would be
the convective range of scales in which the separations between the four points
are larger than the diffusive scale but smaller than the scalar injection scale.)
Progress came from the recognition that the anomalous scaling contributions to
the four- through n-point correlation functions, and respectively to the fourth-
through nth-order moments of the scalar increments (that is, structure functions),
originate primarily from homogeneous solutions of the partial differential equa-
tion, that is, from the zero modes Z of  the eddy diffusivity operator LZ = 0. Thus,

v t r v t r v t r v t r t t K r rα α β β αβδ( ; ) ( ; ) ( ; ) ( ; ) ( )1 1 1 2 2 1 2 2 1 2 1 2−( ) −( ) = −( ) −
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the first important outcome of the analysis was that the value of the anomalous
exponent for the passive scalar structure functions was insensitive to the strength
of the forcing field. It was also shown that the anomalous contribution originates
from matching the homogeneous and inhomogeneous solutions at the injection
scale rather than the diffusive scale. Zero modes of the eddy diffusivity operator
were analyzed and anomalous corrections ∆2n were calculated in some important
limits of the Kraichnan model corresponding to (a) a high spatial dimension, 
d → ∞, so that calculations were done in an expansion with respect to 1/d
(Chertkov et al 1995, Chertkov and Falkovich 1996), (b) an extremely irregular
(diffusive) velocity, 2 – γ << 1 (Gawedzki and Kupiainen 1996), (c) an almost
spatially smooth velocity, γ << 1 (Shraiman and Siggia 1995, Pumir et al. 1997),
and later for (d) a large deviation, or instanton, regime for which it was shown
that the structure function exponent ξ2n saturates to a constant (Chertkov 1997,
Balkovsky and Lebedev 1998). For the first time ever, analytical calculations of a
turbulence problem predicted the existence and the degree of anomalous scaling.

Passive transport in general and anomalous scaling in particular have also
been given a transparent Lagrangian interpretation: It was shown that the n-point
Eulerian (simultaneous) correlation function can be reinterpreted in terms of
Lagrangian trajectories of n particles/markers evolving in the same velocity field.
Thus, the Eulerian pair-correlation function of the scalar field 〈θ (r + 1)θ (r)〉 is
equal to the value of the θ 2 energy flux εφ multiplied by the time 〈Tl→Lφ〉, which
is defined as the average (over velocity field statistics) of the time for two parti-
cles released a distance r12 apart to become separated by a distance Lφ. In this
Lagrangian interpretation, the anomalous scaling is related to correlations
between Lagrangian trajectories of different particles—for example,
〈Tr12→LTr34→L〉 ≠ 〈Tr12→L〉〈Tr34→L〉. (That is, two pairs of particles, 1-2 and 3-4
respectively, released in the same flow diverge so that both r12 and r34 reach the
integral scale L in finite times, Tr12→L and Tr34→L, respectively. However, if the
gedanken experiment is repeated many times, one finds that the two times are
actually correlated; that is, they are statistically dependent. The Lagrangian inter-
pretation of passive scalar transport has also allowed efficient numerical analysis
of the problem (Frisch et al. 1998), leading to accurate validation of the theoreti-
cal results but, more important, to a wide exploration of anomalous scaling in the
intermediate parametric region—away from the asymptotic limits considered in
Chertkov et al. (1995), Chertkov and Falkovich (1996), Gawedski and Kupiainen
(1995), Shraiman and Siggia (1995), Pumir et al. (1997), Chertkov (1997) and
Balkovsky and Lebedev (1998)—where quantitative theoretical analysis had been
hopeless. 

In an independent development, Burgers turbulence (or simply “Burgulence”)
was found to have anomalous scaling of an extreme kind: The left (negative) val-
ues’ tail of the probability distribution function for the velocity increment is of
extremely extended, algebraic form (Chekhlov and Yakhot 1995, Polyakov 1995,
Khanin et al. 1997, Frisch and Bec 2001). 

These nonperturbative results on anomalous scaling in relatively simple prob-
lems are recognized as the most important breakthrough in the theory of turbu-
lence for the following reasons: (1) They prove that anomalous scaling as an
extreme form of intermittency does exist. They also demonstrate that anomalous
scaling is a generic phenomenon. Now, rather than proving the existence of
anomalous scaling, the major task is to explain why the anomalous scaling expo-
nent is so small (although still distinguishable from zero) in many more complex
situations such as isotropic homogeneous Navier-Stokes turbulence. (2) The new
nonperturbative approach has benefited from a Lagrangian description. Thus, in
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the passive scalar case, differential equations for scalar correlation functions can
be reinterpreted in terms of a path integral over many Lagrangian trajectories
(each set of trajectories corresponding to a single realization of velocity field). (3)
The development of scalar turbulence theory (Shraiman and Siggia 2000,
Falkovich et al 2001) has also generated new results in related areas of research
such as kinematic dynamo theory (Vergassola 1996, Chertkov et al. 1999),
enhancement of chemical reactions by turbulence (Chertkov 1999, Chertkov and
Lebedev 2003), polymer stretching by turbulence (Balkovsky et al. 2000 and
2001; Chertkov 2000), elastic turbulence (Fouxon and Lebedev 2003), and more.

The progress achieved in scalar turbulence has also generated a resurgence of
interest in more complex problems in statistical hydrodynamics. Motivated by the
Lagrangian representation of passive scalar transport, we and colleagues have
found a finite number of Lagrangian particles (four, or a tetrad, is the minimum
number—see Chertkov et al. (1999) can be considered a sensible closure frame-
work for a Lagrangian phenomenological model of Navier-Stokes turbulence.
Finally, the two solvable models have opened possibilities for benchmarking vari-
ous nonperturbative methods of statistical hydrodynamics such as instanton cal-
culus (Chertkov 1997, Balkovsky and Lebedev 1998, Falkovich et al. 1996,
Balkovsky et al. 1997). Our optimistic expectation is that these powerful theoreti-
cal methods may soon deliver new results for more complex and challenging
problems in statistical hydrodynamics, including homogeneous isotropic Navier-
Stokes turbulence, shear-driven turbulence, and perhaps even Rayleigh-Taylor
turbulent mixing and magnetohydrodynamic turbulence. n
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